
1/20

APPLICATIONS

- ► Low-Speed Optical Links
- Optical Interrupter/ Reflective Sensors
- ► Process Control
- ► Motor Controller Triggering
- ► Medical Instruments
- ► Automotive Electronics
- ► Robotics Control
- ► EMC/EMI Signal Isolation
- ► Electronic Games

DESCRIPTION

The IF-D93 is a very high-sensitivity photodarlington detector housed in a "connector-less" style plastic fiber optic package. Optical response of the IF-D93 extends from 400 to 1100 nm, making it compatible with a wide range of visible and near-infrared LEDs and other optical sources. This includes 650 nm visible red LEDs used for optimum transmission in PMMA plastic optic fiber. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 µm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The IF-D93 is suitable for low-speed optical links requiring high sensitivity. Triggering rates up to 1 kHz are possible using the IF-D93 and a suitable LED source. Photodarlington transistor operation provides very high optical gain, eliminating the need for post amplification in many circuits. The integrated design of the IF-D93 makes it a simple, cost-effective solution in a variety of applications.

FEATURES

- \blacklozenge Mates with Standard 1000 μm Core, 2.2 mm Jacketed Plastic Fiber Optic Cable
- Mates with 2.2 mm Jacketed Multimode Glass Fiber, 200/230 or 400/430 using Active Device Adapter 51 0537; 51 0538
- No Optical Design Required
- ◆ Inexpensive but Rugged Plastic Connector Housing
- Internal Micro-Lens for Efficient Optical Coupling
- Connector-Less Fiber Termination
- Light-Tight Housing provides Interference Free-Transmission
- Very High Optical Sensitivity
- ◆ RoHS Compliant

MAXIMUM RATINGS

$(T_{A} = 25^{\circ}C)$
Operating and Storage Temperature Range (TOP, TSTG)40°to 85°C
Junction Temperature (TJ)85°C
$\begin{array}{l} \text{Soldering Temperature} \\ (2mm \text{ from case bottom}) \\ (T_{\text{S}}) \ t \leq 5 \ \text{s260°C} \end{array}$
Collector Emitter Voltage (VCEO)15 V
Emitter Collector Voltage (VECO)5 V
Collector Current (IC)50mA
Collector Peak Current
(ICM) t =1ms100 mA
Power Dissipation (P _{TOT}) T _A =25°C100 mW
De-rate Above 25°C1.67 mW/°C

Characteristics $(T_A = 25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Wavelength for Maximum Photosensitivity	λ_{PEAK}	-	850	-	nm
Spectral Bandwidth (R=10% of RMAX)	Δλ	400	_	1100	nm
Switching Times (10% to 90% and 90% to 10%) (RL=1k Ω , VCE=5 V, λ =880 nm) See Figure 2. V _{out} = 1V	tr t _f	-	700 800	-	μs
Responsivity min. @ 870 nm @ 650 nm	R	-	5600 5300	-	μA/μW
Collector Dark Current (VCE=10 volts)	ICEO	-	-	100	nA
Breakdown Voltage (IC=1mA)	BVCEO	15	-	-	V
Breakdown Voltage (IC=100 µA)	BVECO	5	-	-	V
Saturation Voltage (IC=400 μ A, H=10 μ W)	V _{EC sat}	-	0.70	1.10	V

CAUTION: The IF D93 is ESD sensitive. To minimize risk of damage observe appropriate precautions during handling and processing.

IF D93

Fiber Optic Photodarlington

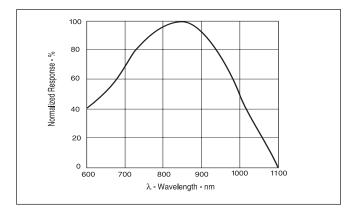
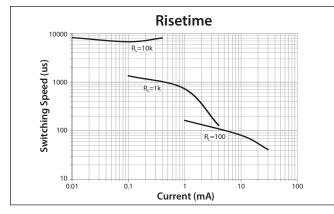



FIGURE 1. Typical detector response versus wavelength.

 $FIGURE \ 2A. \ {\rm Rise \ time \ versus \ load \ resistance}.$

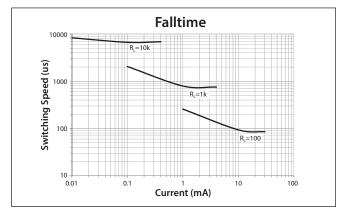
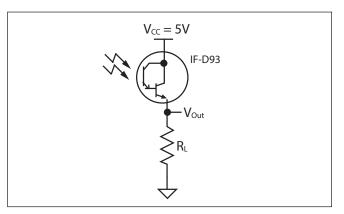
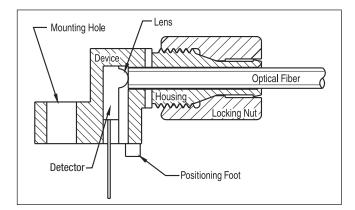
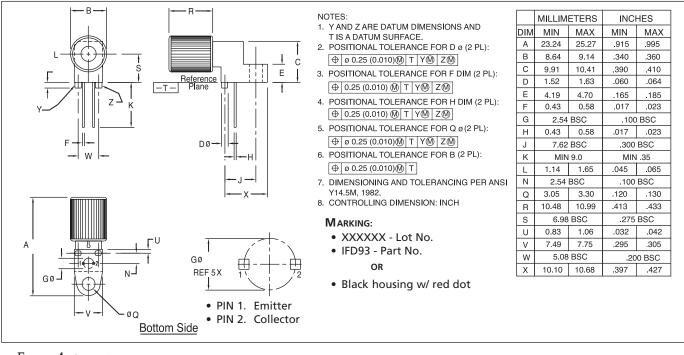
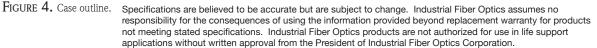



FIGURE 2B. Fall time versus load resistance.

 F_{IGURE} 3. Switching time and application circuit




FIGURE 4. Cross-section of fiber optic device.


FIBER TERMINATION INSTRUCTIONS – PLASTIC OPTICAL FIBER

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- Screw the connector locking nut down to a snug fit, locking the fiber in place. Do not exceed a torque of 0.4 N·m.

Glass fiber – Refer to instructions listed on manufacturer's data sheet for each active device adapter.

Fiber Optic Photodarlington

CAUTION: • To avoid degraded device life due to package stress, do not bend or form leads outside the orientation shown on drawing.

Ensure that solder flux does not migrate into the device and block the optical path, degrading the performance.
If washing the device, liquid may become trapped in the part cavity. Ensure that all potentially corrosive materials are flushed

out of the device.